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End-to-End Sequential Sampling and Reconstruction for MR Imaging
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Figure 1: We propose a sequential sampling and reconstruction co-design framework for accelerated MRI that adapts to a
target during acquisition. Here, we visualize the sampling policy and final reconstruction of rotated knees in a single-coil
imaging setting with 8 acceleration (8 x subsampling). The first four columns show the cumulative x-space measurements
selected by the proposed learned sampler (pink) in acquisition steps 1 through 4 (during a 4-step acquisition). The fifth
column shows the final image recovered by the proposed learned reconstructor, and the last column is the ground truth. This
example illustrates how our model has learned to adapt to different x-space distributions: the final sampling patterns in the
fourth column contain visible directional structure that aligns with the «-space power spectrum. Rotated anatomical images,
such as these rotated knee images, were not included in the training set (or quantitatively evaluated test set).

Abstract

Accelerated MRI shortens acquisition time by subsam-
pling in the measurement k-space. Recovering a high-
fidelity anatomical image from subsampled measurements
requires close cooperation between two components: (1)
a sampler that chooses the subsampling pattern and (2) a
reconstructor that recovers images from incomplete mea-
surements. In this paper, we leverage the sequential na-
ture of MRI measurements, and propose a fully differen-
tiable framework that jointly learns a sequential sampling
policy simultaneously with a reconstruction strategy. This
co-designed framework is able to adapt during acquisition
in order to capture the most informative measurements for
a particular target (Figure 1). Experimental results on the
fastMRI knee dataset demonstrate that the proposed ap-
proach successfully utilizes intermediate information dur-

ing the sampling process to boost reconstruction perfor-
mance. In particular, our proposed method outperforms the
current state-of-the-art learned r-space sampling baseline
on up to 96.96% of test samples. We also investigate the in-
dividual and collective benefits of the sequential sampling
and co-design strategies. Code and more visualizations are
available at hitp://imaging.cms.caltech.edu/seq-mri.

1. Introduction

Magnetic Resonance Imaging (MRI) is a widely used
imaging technology for clinical diagnosis and biomedical
research. MRI is non-invasive, requires zero radiation, and
can result in images with strong tissue contrast and excel-
lent quality. However, a central challenge of MRI is its slow
acquisition process. Standard MRI scans can take up to half
an hour as measurements in x-space are being collected, es-
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pecially during research studies [46]. This long acquisition
time leads to high cost, patient discomfort, and significant
reconstruction artifacts when patients move. Thus, there is
strong motivation to accelerate the MRI acquisition process.

One way to accelerate MRI is to collect fewer measure-
ments and reconstruct anatomical images from only partial
k-space data. This acceleration requires: (a) a carefully
designed rk-space subsampling pattern to collect informa-
tive measurements, and (b) a reconstruction method that ac-
curately recovers high-quality images from undersampled
data. Current MRI protocols collect measurements over
time using static subsampling patterns that were designed
a priori. To further accelerate a scan, we are interested in
sequential sampling patterns that adapt to a target based on
intermediate information collected during acquisition.

A high-fidelity MRI reconstruction stems from cooper-
ation between the x-space sampling strategy and the re-
construction method. Traditionally, MRI subsampling pat-
terns and reconstruction methods have been largely inde-
pendently designed. We are instead interested in co-design,
where jointly designing the two components can synergis-
tically boost reconstruction quality. Our approach builds
on neural network based co-design frameworks that have
shown strong empirical performance and take advantage of
efficient differentiable training [1, 15, 16, 34].

In this paper, we propose an end-to-end differentiable
framework that successfully combines co-design and se-
quential sampling. Specifically, we design an explicit se-
quential structure of T steps, with each step consisting of a
jointly learned k-space sampler and reconstructor. Compar-
ing our model with prior work in accelerated MRI, we in-
vestigate the individual and collective benefits of sequential
sampling and co-design. We evaluate the proposed model
on the NYU fastMRI datasets and find that: (1) even a sin-
gle sequential step consistently improves performance com-
pared to using a pre-designed sampling pattern; (2) more se-
quential steps can improve reconstruction quality, but with
diminishing returns; and (3) a fully differentiable approach
enables more efficient and effective co-design than non-
differentiable methods (e.g., prior approaches that optimize
via reinforcement learning).

The paper is organized as follows. In Section 2, we re-
view past literature in accelerated MRI from the perspec-
tives of co-design and sequential sampling. In Section 3,
we mathematically formulate the accelerated MRI problem.
We then introduce our proposed framework and its training
procedure in Section 4. Section 5 presents our experimental
settings, comparisons between our model and other base-
lines, and ablation studies. Finally, we conclude with a dis-
cussion on future directions of our framework in Section 6.

2. Related Work in Accelerated MRI

Prior work in accelerated MRI can be organized into four
quadrants, split across two dimensions: methods that (1)
independently (and/or manually) design the sampler and
reconstructor versus data-driven co-design, and (2) spec-
ify the sampling pattern prior to a scan (pre-designed) ver-
sus adapt samples to the target during acquisition. In Sec-
tion 2.1, we cover traditional methods that independently
(and/or manually) design the sampler and reconstructor. In
Section 2.2, we discuss previous methods that perform pre-
designed acquisition in a co-design framework. In Sec-
tion 2.3, we introduce recent work on sequential sampling
for accelerated MRI. We conclude in Section 2.4 with an
overview of methods that attempt to combine co-design and
sequential sampling, but without end-to-end learning. In
this paper, we propose an end-to-end framework that effi-
ciently combines co-design and sequential sampling, suc-
cessfully inheriting the advantages of both approaches.

2.1. Traditional Methods

Accelerated MRI sampling patterns implemented on
commercial scanners are motivated by ideas in compressed
sensing (CS) [7]. Since anatomical images are sparse in
a linearly transformed space, it is possible to reconstruct a
high-fidelity image with incoherent k-space data sampled
below the Nyquist-Shannon rate [23]. In the context of 2D
CS-MRI, prior work has investigated uniform density ran-
dom sampling, variable density sampling [22], Poisson-disc
sampling [37], continuous-trajectory variable density sam-
pling [8], and equi-spaced sampling [9]. These sampling
patterns are easy to implement, but not adaptive to specific
datasets or target images.

Once sparse ~-space measurements have been acquired,
an image is typically reconstructed via an optimization
problem that involves two objectives: the first encour-
ages a reconstruction that matches the observed data, while
the second addresses the ill-posed nature of the under-
determined system through image regularization. Common
regularization terms include total variation (TV) [6] and the
£1-norm after a sparsifying transformation (obtained using
wavelets [22,30] or dictionary decompositions [12,27,47]).

Recently, convolutional neural networks (CNNs) have
demonstrated impressive performance in MRI reconstruc-
tion. Strategies include unrolled networks [10,21,29,45],
UNet-based networks [13, 19], GAN-based networks [25,

], among others [20,40,50]. These learning methods have
achieved state-of-the-art performance on public MRI chal-
lenge datasets [46]. In our proposed co-design model, we
employ a convolutional UNet for image reconstruction.

2.2. Co-design

The goal of co-design is to jointly identify the optimal
sampling and reconstruction strategies. This is an NP-hard



combinatorial optimization problem due to the discrete na-
ture of the sampling pattern. Theoretically, one could iden-
tify an optimized reconstructor for every possible sampling
strategy, and then pick the overall strategy that performs
best. However, this brute-force optimization approach is not
practical, as it requires enumerating an exponential number
of possible sampling combinations. Early work formulated
the co-design as a nested (or bi-level) optimization problem
and alternated between optimizing a sampler and a recon-
structor [26].

More recently, deep learning has enabled a data-driven
solution to the co-design problem, where the sampler and
reconstructor can be jointly learned through end-to-end
training. For example, [1,43,48] proposed co-design frame-
works for 2D Cartesian x-space sampling and [39,42] ap-
plied co-design to 2D radial x-space sampling.! These
methods have shown superior performance over previous
baselines that combine an individually-optimized sampler
and reconstructor pair [, 34, 39,43, 48]. However, these
methods do not take advantage of the sequential nature of
data collection during an MRI scan, and only solve for a
generic sampling pattern for an entire dataset.

2.3. Sequential Sampling

Since MRI scanners acquire measurements over time, re-
cent work has modeled the sampling process in the context
of sequential decision making. Sequential decisions enable
the sampling pattern to adapt to different input images by
choosing the next x-space sample based on prior measure-
ments. Reinforcement learning (RL) methods have primar-
ily been employed for this purpose. For example, [2, 24]
formulate the sampling problem as a Partially Observable
Markov Decision Process (POMDP) and use Policy Gradi-
ent [4] and DDQN [36] methods, respectively. These RL
methods heavily rely on a pre-trained reconstructor, which
leads to a training mismatch (and thus potentially subopti-
mal performance), since the reconstructor was trained with
a sampling strategy that does not match the strategy even-
tually employed by the RL-learned sampler. Furthermore,
these RL methods are difficult and costly to train, as they
are non-differentiable. As a consequence, in the context of
accelerated MRI, these methods either fail to be adaptive
to different input images or have only limited improvement
over simple baselines [2, 24].

2.4. Co-design & Sequential Sampling

Approaches that seek to combine co-design and sequen-
tial sampling strategies have been proposed, however with
only limited success thus far. The work of [14] draws inspi-
ration from AlphaGo [31] and trains a sampler to emulate
the policy distribution obtained through a Monte Carlo Tree

I Differentiable co-design of sensing and reconstruction methods has
also been successfully applied to other imaging domains as well [34].

Search (MCTS); the reconstructor is trained during alternat-
ing optimization steps. However, according to the results
in [2], the MCTS method in [14] has limited improvement
over simple baselines, and is outperformed by the sequen-
tial sampling method in [2] without co-design. This poor
performance may be due to the overall MCTS framework
not being end-to-end differentiable. Alternatively, [49] pro-
poses a framework that trains a ResNet to reconstruct the
anatomical image simultaneously with an evaluator network
that is trained to select the most uncertain measurement in
k-space. Although the authors demonstrate how this frame-
work can be used to sequentially choose the next sample,
it is not explicitly trained end-to-end and is outperformed
by [24], which does not use co-design. This training-testing
mismatch limits the potential improvement of sequential
sampling. In contrast, we design a fully differentiable end-
to-end framework that leverages the sequential nature of x-
space MRI acquisition during both training and testing.

3. MRI Fundamentals

MRI acquires measurements in the Fourier space (i.e. -
space). Let y € CM*N be the complex-valued matrix rep-
resenting the full k-space data of an M x N target image
x € RM*N_In the case of no noise, the true image can
be simply recovered through an inverse Fourier transform:
x = F~1(y). However, in accelerated MRI scanning, only
a subset of k-space samples, ¥, are measured:

y=Moy=Mo F(x), 1)

where © indicates element-wise multiplication and M €
{0,1}M>*N s a binary sampling mask.

We can compute a zero-filled image reconstruction by
applying an inverse Fourier transform to the under-sampled
k-space, where zeros occupy the unobserved rk-space sam-
ples: & = F~1(§). This zero-filled reconstruction contains
aliasing artifacts, and a reconstruction algorithm is often
used to recover a clean target image [1, 2, 10,40,49]. We
define the acceleration factor o as the ratio between the to-
tal number of possible x-space samples K and the number
of acquired measurements (i.e., « = K/ > M).

4. Method

Figure 2 summarizes the co-design framework for our
sequential sampling and reconstruction model. We partition
the x-space sampling budget into 7" steps. At each step, t,
the pipeline applies a reconstructor, A,,(-), and a sampler,
mg(+). The goal of the reconstructor is to remove aliasing
artifacts that appear in the zero-filled reconstruction, X;:

X = Auw(Xe). 2

The goal of the sampler is to intelligently select which -
space samples to observe next, based on previously ob-
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Figure 2: Overview of the proposed sequential sampling framework. Low-frequency samples are pre-selected and measured
in k-space. The subsampled k-space is transformed into a zero-filled image, which is fed into a reconstructor A, () to
produce an intermediate image reconstruction (Equation (2)). The intermediate reconstruction and measurements are passed
into a sampler network 7y (-), which outputs a discrete probability distribution representing suggested samples for the next
iteration. An action is sampled from this distribution (Equation (3)), and the corresponding k-space measurements are
acquired. The sampling and reconstruction process is repeated for 7" steps. The sampler and reconstructor are neural networks
learned via end-to-end training with a loss on the final reconstructed image. Weights are shared across all 7" acquisition steps.

served measurements and a preliminary reconstruction: 1D Line Sampling 2D Point Sampling

Mt+1 ~TY (ytv yta Mt) (3
5~t~Z(Mt+l 7Mt) =5 4
where §; and y; = F(X;) denote the k-space represen- ;

tation of the zero-filled image (X;) and the reconstructed
image (X;), respectively, M is a binary mask representing
the sampling pattern collected up until step ¢, and .S is the
sampling budget at each step.

We model the sampler, 7g(-), and reconstructor, A,,(+),
as neural networks, and co-optimize the network weights,
# and w, by minimizing the image reconstruction error be-
tween the final step reconstruction X7 and the ground truth
target image x:

Pre-selected
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~

Figure 3: Visualizations of two types of x-space sampling
patterns: 1D line sampling and 2D point sampling. White
regions are sampled from a uniform distribution over the
space of possible actions. The center low-frequency sam-
ples are pre-selected in all experiments before any further
sampling. DC corresponds to the (0, 0) frequency.

0%, w* = arg min D(Xr, %), (€)) 2D point sampling. Figure 3 illustrates these two sampling
b scenarios, which enable different levels of sampling flexi-
where D is an image distance metric, such as the struc- bility. 1D line sampling represents one of the most widely
tural similarity index measure (SSIM) [41] or peak signal- used r-space sampling strategies on commercial scanners
to-noise ratio (PSNR). We choose to share sampler and re- due to its fast acquisition time [22]. In 2D point sampling
constructor weights across all 7" steps. The sampler and any measurement on the M x NV frequency grid in x-space
reconstructor are described in more detail in Sections 4.1 can be acquired. Unconstrained 2D point sampling repre-
and 4.2, respectively. sents an upper bound on sampling flexibility, can be physi-
cally feasible in specific scenarios [ ], and is often explored

4.1. Sampler as a methodological building block.
In the design of the sampler, 74(+), we consider two types As low-frequency k-space measurements contain the

of k-space sampling: 1D line sampling and unconstrained most information about large-scale anatomical structure, it



is common practice in accelerated MRI to fix a small num-
ber of low-frequency k-space samples to always be col-
lected [2,24,49]. We follow this strategy by allocating %
of the total sampling budget to the central low-frequency
region in all experiments.

4.1.1 Neural Sampler Architecture

The action space at each step ¢ is the set of possible
sampling indices (i.e., K = N in the line sampler and
K = N x M in the point sampler). As shown in Equa-
tion (3), the input to the sampler is the past x-space mea-
surements, yt_l, K-space reconstruction, ?t_l, and sam-
pling mask, M;_;. The output is a binary sampling mask
M, € {0,1}¥. New samples acquired at time step ¢ are
indicated by M; — M;_1.

An intermediate out}gut of the network-based sampler is
a heatmap P, € [0,1]", which defines the probablity that
a sample will be selected at acquisition time ¢. In order to
ensure that P, is between zero and one, a softplus and nor-
malization are applied.” Additionally, to avoid reacquiring
previous measurements, the sampling probability of previ-
ously acquired lines is set to zero:

P,=P,®(1—-M;) (5)

Inspired by the stochastic strategy in [1], we sample from
the distribution P} to obtain the x-space sampling mask M,
for acquisition step ¢:

M; = ly<p; + M;—1, (6)

where U is a vector of /N independent realizations of the
uniform distribution on the interval [0,1]. We use rejec-
tion sampling to guarantee the exact number of specified
K-space samples is obtained at each step ¢.

The indicator function 1y<p is not differentiable, which
hinders the training of the model through back-propagation.
In this paper, we follow [5, 48] and use a straight-through
estimator that applies the indicator function in the forward
pass to generate the binary sampling mask M 1, while ap-
proximating its gradients by treating the binary indicator
function as a sigmoid during back-propagation. In this way,
we are able to capture binary sampling in real MR scanning,
while retaining useful gradients for end-to-end training.

We instantiate the 1D line sampler as a Multilayer Per-
ceptron (MLP) with five layers separated by ReLU acti-
vation functions. In the 2D point sampler we replace the
MLP with a 8-block convolutional UNet network design
with ReLU activation functions. We find the convolutional
architecture more efficient on the higher dimensional action
space. Further details of the network architectures for both
sampler networks are included in the supplemental material.

2To help enforce the sampling budget constraint in Equation (3), Py is
also rescaled to obtain the desired average value following [1].

4.2. Reconstructor

Our proposed co-design sequential framework learns the
parameters of a reconstructor, A, (-), jointly with the sam-
pler. The only requirement for the reconstructor is that it
is differentiable with respect to parameters w. We model
the reconstructor as a neural network. Although many
networks have been proposed for MR image reconstruc-
tion [10, 29, 32,45], in this paper, we adopt a standard 8-
block U-Net architecture [28] following [1,2,46]. The in-
put to the reconstructor at each time ¢ is the complex-valued
zero-filled image, X;, and the output is a single channel real-
valued image, X;. The UNet reconstructor contains four
downsampling blocks and four upsampling blocks, each
consisting of two 3x3 convolutions separated by ReLU and
instance normalization [35]. Our framework is agnostic to
the specific reconstructor architecture.

5. Experimental Results

5.1. Setup and Implementation Details

We evaluate our sequential sampling and reconstruc-
tion method on the NYU fastMRI open dataset [ 1. The
dataset provides RAW single-coil x-space measurements
for knee images, with 973 training set volumes and 97 val-
idation set volumes [46]. We follow the setup of [24] and
split the original validation set into a new validation set with
48 volumes and a test set with 49 volumes, which results in
34,742 2D slices for training, 1,785 slices for validation,
and 1,851 slices for testing. To save on computation, we
crop the k-space to the center 128 x 128 region, as is done
in [2, 14,49].

We use the structural similarity index measure (SSIM)
for our model’s training loss, following [2,24,32]. SSIM is
computed using a window size of 7x7 and hyperparmeters
k1 = 0.01, k2 = 0.03 following the fastMRI challenge’s of-
ficial implementation. We use the Adam optimizer [ 7] and
train our model for 50 epochs with a learning rate of 1e — 3
for 2D point sampling experiments and 5e — 5 for 1D line
sampling experiments. The learning rate is decreased by
half every ten epochs. Training each model takes at most
one day on a single RTX 2080Ti GPU. We use SSIM as the
primary evaluation metric, which has been found to corre-
late well with expert evaluations [18].

5.2. Results

In Figure 1, we visualize our framework’s sequential
sampling trajectory and final reconstruction for rotated
knees in the 8x acceleration setting. Starting from pre-
selected measurements, our model sequentially samples
2D k-space measurements based on previous observations.
Here, we demonstrate that our model is able to accurately

3https://fastmri.orq/
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Figure 4: Visualizations of example reconstructions with an acceleration factor of 4x (top) and 8 x (bottom) for 2D point
sampling. A zoomed-in image patch is shown along with the cumulative x-space measurements selected by each policy.
Our sequential approach often provides more accurate reconstructions with detailed local structures. More visualizations are
included in the supplemental material.

Methods Random Equispaced [46]  Evaluator [49] PG-MRI [2] LOUPE [1] 4-Step Seq. (Ours)
SSIM 85.95 £ 0.05 86.86 + 0.06 8599 +0.04 8797 +0.09 89.52 +0.02 91.08 £+ 0.09

Table 1: The SSIM comparison of 1D line sampling with a 4 x acceleration factor. Our 4-step sequential model outperforms
the previous approaches when tested on the fastMRI knee test set. A paired ¢-test shows a statistically significant difference
between our 4-step sequential model and LOUPE [ 1], with a p-value smaller than 1073%°, For each model, we compute the
test average and standard deviation obtained across three trained models with independent initialization.

estimate and leverage the x-space structure during the se- patterns contain visible directional structures that align with
quential sampling steps. In particular, the final sampling the true x-space power spectrum induced by knee rotation.
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Figure 5: Pair-wise SSIM comparison of fastMRI knee targets using 2D point sampling for different acceleration factors.
Results are sorted for the top 1,000 targets according to the performance of the non-sequential baseline on the test set. Our
sequential model outperforms the LOUPE [ 1] and non-sequential baselines for most subjects. This performance pattern holds
on all target reconstructions and is shown in the supplemental material. More quantitative results are shown in Table 3.

Acceleration 4x 8x 16 x

Random 90.40 +0.02 87.43 +0.05 84.25 + 0.00
Spectrum [38] 92.39 £0.01 90.38 +£0.01 88.37 £+ 0.01
LOUPE [1] 92.44 £ 0.01 90.60 4 0.03 88.73 + 0.04

4-Step Seq. (Ours) 92.91 £ 0.01 91.07 + 0.02 89.10 £+ 0.03

Table 2: SSIM comparison of 2D point sampling for 4x,
8%, and 16x accelerations. Our 4-step sequential model
outperforms the previous approaches when tested on the
fastMRI knee test set. For each model, we compute the test
average and standard deviation obtained across three trained
models with independent initialization.

This highlights the adaptivity of our sequential model, as no
rotated anatomical images were included in the training set.

2D Point Sampling Figure 4 shows sample reconstruc-
tions obtained with an 8x and 16X acceleration ratio for
multiple approaches. In each approach, the reconstruction
network has been trained jointly with the specified sampling
policy. See the supplementary material for the implemen-
tation details of these baseline methods. Using the same
number of k-space samples, our 1-step and 4-step sequen-
tial methods are able to recover structure that was lost in the
baseline Random, Spectrum [38], and LOUPE [1] methods.
Table 2 summarizes the quantitative comparison between
methods for 4x, 8x, and 16x acceleration. Our 4-step
sequential framework achieves the best reconstruction per-
formance across different acceleration ratios for 2D point
sampling. Additionally, a paired ¢-test between our method
and the previous state-of-the-art pre-designed sampling ap-
proach, LOUPE [ 1], indicates a statistically significant dif-
ference in performance, with a p-value less than 10160 for
all acceleration ratios.
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Figure 6: Comparison between our sequential model and
the LOUPE model on the fastMRI knee test set. Our se-
quential model outperforms LOUPE for all acceleration ra-
tios with an improvement comparable to 25% of the benefit
of doubling the number of k-space measurements. The per-
formance of our sequential model in the 1D line sampling
case significantly outerforms LOUPE but plateaus after 2
sequential sampling steps, possibly due to the restricted ac-
tion space of 1D line sampling.

1D Line Sampling Table | compares our model to previ-
ous methods for 1D line sampling with a 4x acceleration
factor. The baselines we consider include: (1) Random:
randomly select x-space lines from a uniform distribution,
(2) Equispaced: select lines that are equidistant from each
other [46], (3) Evaluator: sequentially select lines following
the evaluation scoring function introduced in [49], (4) PG-
MRI: sequentially select lines using conditional distribution
trained using a policy gradient algorithm [2], (§) LOUPE:
select lines prior to acquisition using a distribution learned
via co-design [1]. The implementation details of these base-
lines are included in our supplemental material. Our 4-step
sequential framework significantly outperforms prior meth-
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Figure 7: Histograms of pair-wise SSIM comparison on
all 1,851 test images with a different number of sequen-
tial steps (T'), using 2D point sampling with a 4x accel-
eration factor. The relative error between the 4-step and
1-step (left) or 2-step(right) demonstrates that additional se-
quential steps help to boost performance, but with diminish-
ing returns as 7" increases.

ods, with an SSIM improvement of 1.56 over the previ-
ous state-of-the-art learning-based method, LOUPE [1]. A
paired t-test also indicates a highly statistically significant
boost in performance compared to LOUPE with a ¢-score
of 64.01 and a p-value smaller than 1073, Note that our
differentiable end-to-end framework also significantly out-
performs a sequential reinforcement learning optimization
approach, PG-MRI [2].

Adaptive versus Pre-designed Sampling Figure 5 shows
a pair-wise comparison between our 4-step sequential
framework and the pre-designed sampling baselines. The
baselines include previous state-of-the-art LOUPE method
and a non-sequential baseline that uses the same network
architecture as our sequential model, but replaces the prior
K-space measurements used as input with a random tensor
(referred to as “Non-seq.”). The non-sequential baseline is
comparable to or outperforms the LOUPE baseline [1] (re-
fer to Table 3). Across all three different acceleration ra-
tios studied, our 4-step sequential model outperforms the
pre-designed sampling baselines for most subjects in the
fastMRI knee test set.

Number of Sequential Steps Figure 6 shows a compari-
son between our sequential models and the previous state-
of-the-art LOUPE model [1]. For the case of 2D point sam-
pling, the accuracy consistently increases as the number
of sequential sampling steps increases. In fact, our 4-step
sequential model achieves a 0.37-0.48 SSIM improvement
over the LOUPE baseline for all acceleration factors, which
is approximately 25% of the benefit of doubling the num-
ber of k-space measurements (when switching from 8x to
4x acceleration for the LOUPE model SSIM increases by
1.84). To further understand the improvements seen with
additional sequential steps, we perform a pair-wise SSIM
comparison between our sequential models; Figure 7 shows
the result of 2D point sampling with a 4x acceleration ra-

Acceleration 4x 8x 16x

Non-Seq. 74.05 £2.56 60.18 £3.03 46.98 4 8.58
1-Step Seq. 7742 +£7.89 57.05+436 51.09+4.16
2-Step Seq. 88.74 £ 045 83.04 £3.78 56.42 +4.62
4-Step Seq. 96.96 - 0.73 92.62 + 046 76.91 + 2.29

Table 3: The percentage of test samples that outperform
the LOUPE [1] baseline, demonstrating the performance of
our framework as a function of the number of sequential
sampling steps (7") for 2D point sampling. The percentage
average and standard deviation are obtained using results
from three trained models with independent initialization.

Co-design  1-Step Seq. 4-Step Seq.
Yes 92.66 = 0.06 92.91 + 0.01
No 90.33 +£0.01 90.40 + 0.02

Table 4: Ablation results showing the advantage of co-
design with a 4x acceleration ratio and 2D point sampling.
When co-design is specified as ““Yes” the reconstruction net-
work has been jointly optimized with the sampler. Other-
wise, the sampler was optimized with a fixed reconstructor
that was pre-trained with a random sampling policy.

tio. Additional sequential steps boost the reconstruction
performance for almost all subjects, with diminishing re-
turns as 7' increases. Table 3 shows quantitative results
that compare the percentage of test samples that outperform
the LOUPE baseline. On 2D point sampling, our 4-step
sequential model outperforms LOUPE roughly 97%, 89%,
and 77% of the time for the 4x, 8 x and 16x acceleration
factors, respectively.

Co-design Ablation We demonstrate the advantage of co-
designing the sampler and reconstructor in Table 4. Specif-
ically, we pre-train a reconstructor using a uniform sam-
pling policy and demonstrate the improvement in perfor-
mance that occurs when jointly learning the reconstructor
weights with the sampler. Co-designing the reconstructor
with the sampler significantly improves performance, with
an increase of 2.33-2.51 SSIM for 2D point sampling with
a 4x acceleration factor.

6. Conclusion

Accelerating the MRI acquisition process has the po-
tential to reduce patient discomfort, increase throughput,
and expand the use of MRI worldwide. In this paper, we
have proposed an end-to-end sequential sampling and re-
construction framework for accelerated MR imaging. We
leverage the sequential nature of MRI acquisition and de-
sign a model with explicit sequential structure that jointly



optimizes a neural network-based sampler simultaneously
with a network-based reconstructor. In our experiments,
this simple framework outperforms previous state-of-the-
art MR sampling approaches for up to nearly 97% of
the test samples on the fastMRI single-coil knee dataset.
Our framework is trained through end-to-end differentiable
learning, making our method easy to implement in standard
machine learning libraries and train on new datasets.

In the future we plan to expand our general framework
to handle more realistic experimental settings. In particular,
by replacing our discrete 2D sampler with one that sam-
ples from a continuous 2D trajectory space, we can model
more complex but feasible trajectories. Additionally, re-
alistic subject motion can be simply incorporated into our
model by perturbing the 3D target volume according to a
motion model during the T' acquisition steps. Other fu-
ture directions include incorporating uncertainty quantifica-
tion [33,49] and integrating with tasks such as anatomical
registration [3] or image segmentation [ | |] to arrive at more
unified end-to-end frameworks. Overall, our results suggest
that future methods for MRI sampling can benefit from the
collaboration of sequential sampling and co-design via end-
to-end learning.
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