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SIMBA: Scalable Inversion in Optical Tomography
Using Deep Denoising Priors

Zihui Wu”, Yu Sun

Abstract—Two features desired in a three-dimensional (3D) op-
tical tomographic image reconstruction algorithm are the ability
to reduce imaging artifacts and to do fast processing of large data
volumes. Traditional iterative inversion algorithms are impractical
in this context due to their heavy computational and memory
requirements. We propose and experimentally validate a novel
scalable iterative minibatch algorithm (SIMBA) for fast and high-
quality optical tomographic imaging. SIMBA enables high-quality
imaging by combining two complementary information sources:
the physics of the imaging system characterized by its forward
model and the imaging prior characterized by a denoising deep
neural net. SIMBA easily scales to very large 3D tomographic
datasets by processing only a small subset of measurements at
each iteration. We establish the theoretical fixed-point convergence
of SIMBA under nonexpansive denoisers for convex data-fidelity
terms. We validate SIMBA on both simulated and experimentally
collected intensity diffraction tomography (IDT) datasets. Our re-
sults show that SIMBA can significantly reduce the computational
burden of 3D image formation without sacrificing the imaging
quality.

Index Terms—Optical tomography, regularization by denoising,
plug-and-play priors, stochastic optimization.

I. INTRODUCTION

PTICAL tomographic imaging seeks to recover the three-
dimensional (3D) distribution of the refractive index of an
object from its light measurements. In a standard setup (see Fig. 1
for an example), the sample is illuminated multiple times from
different angles and the scattered light-field is recorded with a
camera. In the interferometry-based microscopy, one measures
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Fig. 1. Conceptual illustration of the proposed inversion algorithm for optical
tomographic imaging. The brightfield measurements of the scattered light-field
are collected with a standard computational microscope platform. An online
reconstruction algorithm, SIMBA, facilitated by a convolutional neural network
(CNN) denoiser is then used to form a 3D phase image. Unlike traditional batch
algorithms, SIMBA processes a subset of measurements at a time, making it
scalable for processing very large tomographic datasets.

both the amplitude and the phase of the scattered field [1]-[3],
while in the intensity-only setups one measures only the am-
plitude of the light-field [4]-[6]. A tomographic reconstruction
algorithm is then used to computationally reconstruct the 3D
distribution of the sample’s refractive index. The quantitative
characterization of the refractive index is important in biomedi-
cal imaging since it allows the vizualization of internal structure
of a tissue, as well as characterize physical changes within
biological samples.

The reconstruction of the refractive index is often formu-
lated as an inverse problem. In this context, the forward model
characterizes the physics of data-acquisition and can be used to
ensure the consistency of the final estimate with respect to the
measurements. However, the need for processing large-scale to-
mographic data limits the utility of traditional iterative methods
in 3D optical tomography. Traditional batch algorithms process
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the whole tomographic dataset at every iteration. On the other
hand, online algorithms can effectively scale to large datasets by
processing only a small subset of data per iteration.

Using imaging priors is a standard strategy for mitigating
the ill-posed nature of many tomographic imaging problems.
Popular imaging priors include Tikhonov [7] and total variation
(TV) [8] regularizers. Recently, a new class of methods, called
plug-and-play priors (PnP) [9], have popularized the idea of
using general image denoisers as imaging priors within iterative
inversion. By leveraging advanced image denoisers, such as
BM3D [10] and DnCNN [11], PnP methods have achieved
the state-of-the-art performance in various imaging applica-
tions [12]-[21]. An alternative framework for using image de-
noisers is the regularization by denoising (RED) [22], where the
denoiser is used to formulate an explicit regularizer that has
a simple gradient. The work [23] has clarified the existence
of RED regularizers for certain class of denoisers, and the
excellent performance of the framework has been demonstrated
in phase retrieval [24] and image super-resolution [25] using
DnCNN and the deep image prior, respectively. In short, using
advanced denoisers has proven to be effective for improving the
reconstruction quality in various imaging contexts. Note that the
concept of regularization described in this paper is distinct from
the concept of regularization for training deep neural nets by
injecting noise [26].

In this paper, we present a new scalable iterative minibatch
algorithm (SIMBA) for the regularized inversion in optical to-
mography. SIMBA is an online extension of the traditional RED
framework. It can thus leverage powerful convolutional neural
network (CNN) denoisers as imaging priors, while also taking
advantage of the physical information available through the
forward model. However, unlike traditional RED algorithms,
SIMBA is scalable to datasets that are too large for batch
processing since it only uses a subset of measurements at a
time. We prove that SIMBA converges in expectation to the
same set of fixed points as its batch counterparts under a set
of transparent assumptions. Thus, SIMBA benefits from the
excellent imaging quality offered by RED, but does so in a
computationally tractable way for optical tomographic imaging.

We validate SIMBA in the context of intensity-only mi-
croscopy called intensity diffraction tomography (IDT). IDT
microscopes are relatively cheap and easy to implement since
they do not collect the phase of the light. We adopt the IDT
forward model in [27] that establishes a linear relationship
between the desired object and the intensity measurements
by neglecting the terms corresponding to higher order light
scattering. We show that SIMBA can efficiently reconstruct a
high-resolution (1024 x 1024 x 25 pixels) IDT image while
also offering improvements in the 3D sectioning capability.
The preliminary version of this work was presented in [28].
The current paper significantly extends [28] by including the
IDT model, providing additional simulations, and validating the
method on an experimentally collected 3D IDT dataset.

This paper is organized as follows. In Section II, we introduce
the IDT forward model and the RED framework. In Section 111,
we present the algorithmic details of SIMBA. In Section IV, we
analyze the fixed-point convergence under a set of assumptions.
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In Section V, we provide simulations and experiments that
illustrate the efficiency and effectiveness of SIMBA. Section VI
concludes the paper.

II. BACKGROUND

In this section, we provide the background on IDT and image-
denoising priors. We start by describing the IDT forward model,
then formulate the corresponding inverse problem, and finally
introduce the RED framework as a strategy to leverage image
denoisers as priors.

A. Linearized IDT

Consider a 3D object with the permittivity distribution €(r)
in a bounded sample domain ) C R3, immersed into the
background medium of permittivity €,. We use Ae = Aege +
1Aemm = € — €, to denote the permittivity contrast between the
object and the background medium. The real part Aeg, corre-
sponds to the phase effect, and the imaginary part Aey, accounts
for the absorption. The object is illuminated by an angled inci-
dent light field u;,(r). The incident field w;, is assumed to be
known inside © as well as at the camera domain I' C R2. The
total light-field u(r) is measured only through its intensity at
the camera. Here, r = (x,y, z) denotes the 3D spatial coordi-
nates. Under the first Born approximation [29], the light-sample
interaction is described by the following equation

u(r) = uip(r) —|—/ g(r — o) u()dr’, reQ (1)
Q

where u(r) = uin(r) + us(r) is the total light field,

v(r) = =k?Ae is the scattering potential, k= 2w/} is

wave number in free space, and XA is the wavelength of the

illumination. In the 3D space, the Green’s function at the camera

plane I is given by

etksllr)2

g\r)= )
[[r 2

where k, = (/b is the wavenumber of the background
medium, and || - |2 denotes the ¢5-norm. For a single illumi-
nation, the intensity of the light field after propagating through
the sample is given by

I=|u(r)=p|* )

where p is the point spread function of the microscope, and the
operator * denotes the 2D convolution. Eq. (2) can be expanded
into the summation of four components

I= Iii + 158 + Iis =+ Isi7 (3)

where I is the constant background intensity, I*® is the squared
modulus of the scattered field, and I*® = (I*")* are the cross
terms that relate the unscattered and scattered field. Here, (-)*
denotes the complex conjugate. Due to the first Born approx-
imation, I*® can be assumed to be small and thus neglected.
By modeling the 3D object as a series of slices along the axial
dimension z, one can represent the spectrum of the total scattered
field as the summation of the sub-scattered fields produced by
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each slice [27]

-1 4 / [Hre(2) Bewe(2) + Hin(2)Beim(2)] dz - )

where ~ denotes 2D Fourier transform, and T is the background
intensity spectrum measured at I'. In (4), Hg. and Hy, are the
angle-dependent phase and absorption transfer functions (TFs)
for each sample slice at depth z, respectively. These TFs linearly
map the Fourier transform of the permittivity contrast to the
intensity spectrum of the scattered field. We refer the reader
to [27] for the full details of the TF for IDT.

By discretizing (4) and explicitly including the Fourier trans-
form into the equation, we obtain the following linear model in
the spatial domain for the s illumination

J
I =10+ Re{ ZAijwj}, with A;; = F'H;F, (5)
Jj=0

where j =0,...,J discretely indexes the axial direction z,
z; €C N is the discretized complex permittivity contrast of
the j‘h slice, I; is the measured intensity of the total field, I ;’
is the discretized intensity of the background, and H; is the
discretized TF accounting for both phase and absorption at z;.
We use F and F! to denote the 2D discrete Fourier transform
and its inverse, respectively. By re-arranging the terms, we can
obtain the following linear forward model

AI;O o)

y; = A;x+e, with AY =] :
A?J Ty

where the operator (-)7 denotes the conjugate transpose,

y; := I, — I'" € RY is the measured intensity with the re-
moval of the background intensity for the i™ {llumination, and
e € RY is the error term. Note that, as was discussed in [27],
the IDT forward model does not contain any information on the
DC component of the phase.

B. Inverse Problem

Since image reconstruction in optical tomography is often
ill-posed, it is typically formulated as the regularized inversion
problem

x = argmin{g(x) + h(x)}, 7
zeCN

where ¢ is the data-fidelity term that ensures the consistency
with the measured data, and h is the regularization term that
imposes the prior knowledge on the desired image. For example,
the Tikhonov regularization [30] assumes a Gaussian prior on
the unknown image. It has been previously used in IDT for
deriving a closed form solution [27]. More recent regularizers,
such as the sparsity-promoting ¢;-norm penalty [31] and the
edge-preserving total variation (TV) [32], are nonsmooth and
do not have closed-form solutions, thus requiring iterative algo-
rithms for image formation. In particular, the family of proximal
methods—such as proximal gradient method (PGM) [33]-[36]
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and alternating direction method of multipliers (ADMM) [37]-
[40]—avoid the need to differentiate the regularizer by using the
proximal map [41].

Recently, deep learning has gained popularity in imaging in-
verse problems [42]-[50]. Traditional strategy trains the convo-
lutional neural network (CNN) to learn the direct mapping from
the measurements to some ground-truth image. Despite their
excellent performance in some image reconstruction problems,
this strategy does not leverage the known physics of the imaging
system and does not insure consistency with the measured data.
In this paper, we propose SIMBA to reconcile the model-based
and learning-based approaches by infusing deep denoising priors
into online iterative algorithms.

C. Regularization by Denoising

RED [22]is arecently introduced framework to leverage pow-
erful image denoisers. It has been successfully applied in many
regularized imaging tasks, including image deblurring [22],
super-resolution [25], and phase retrieval [24]. The framework
aims to find a fixed point * that satisfies

G(x") = Vg(z") + 7(z" — D, (2")) = 0, ®)

where Vg denotes the gradient of g, D, is the image denoiser,
and 7 > 0 adjusts the tradeoff between the data-fidelity and the
prior. RED algorithms seek a vector * that lies in the zero set
of G: R" — R"

z" € zer(G) := {x e R" : G(x) = 0}. )

For example, the gradient-method variant of RED (denoted as
GM-RED) can be implemented as

xb — bt — 4 (Vg(z" ) + HEZF )

where H(z) := 7(x — D,(x)). (10)
Here, the parameter v > 0 is the step-size. When the denoiser
D, is locally homogeneous and has a symmetric Jacobian [22],
[23], the operator H corresponds to the gradient of the following
regularizer

h(z) =~z (z — Dy (x)).

2 (1)

By having a closed-form objective function, one can use the
classical optimization theory to analyze the convergence of RED
algorithms [22]. On the other hand, the fixed-point convergence
has also been established without having an explicit objective
function [20], [23]. Reehorst ef al. [23] have shown that RED
proximal gradient methods (RED-PG) converge to a fixed point
by utilizing the monotone operator theory. Sun et al. [51] have
established the explicit convergence rate for the block coordinate
variant of RED (BC-RED) under a nonexpansive D,,. In this pa-
per, we extend these prior analyses to the randomized processing
of the measurements instead of image blocks, which opens up
applications to tomographic imaging with a large number of
projections.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 25,2020 at 21:31:14 UTC from IEEE Xplore. Restrictions apply.



1166

III. PROPOSED METHOD

We now introduce SIMBA that combines the iterative usage
of the forward model with a deep denoising prior. At each
iteration, SIMBA updates = by combining a stochastic gradi-
ent for increasing data-consistency with a CNN denoiser for
artifact reduction. SIMBA is ideal for data-intensive biomedical
imaging applications where the object features are difficult to
characterize using traditional regularizers.

A. Iterative Online Procedure

Algorithm 1: SIMBA.
I: input: 2° € R*, 7 >0,0 >0,and B > 1
2: fork=1,2,... do
3 Vg(z*~1) + minibatchGradient(z* !, B)
4 Goh 1) « Vg(zh 1) + 7(xF ! — Dy (zh 1))
5
6

xh — gkl — *yé(ack’l)
end for

In IDT, the data-fidelity term can be written as an average
over a set of distinct components functions

I
1

9(@) = 7292-(@, (12)

where each component function g; is evaluated only on the

subset y, of the full measurements y

gi(z) = L(y;, Aix) , (13)

where £ is a smooth loss function quantifying the discrepancy
between the predicted measurement A;x and the actual mea-
surements y,. For example, all the results in this paper were
obtained using

1
(@) = Slly: - Azli = Vi) = A (Aiw — y,).

The computation of the gradient of g

I

V(@)= ; Vi), (14)
is proportional to the total number of illuminations I. A large
I effectively precludes the applicability of the batch RED algo-
rithms due to the computational cost of evaluating Vg.

SIMBA, summarized in Algorithm 1, improves scalability
through partial randomized processing of gradient components
V g; via the following minibatch approximation of the gradient

B
Vy(z) = é > Vi, (@), (15)
b=1
where i1, ...,1p5 are independent random indices that are dis-
tributed uniformly over {1, ..., I}. Due to its ability to control
the minibatch size 1 < B < I, SIMBA benefits from consider-
able flexibility for trading off different practical considerations
compared to the batch RED algorithms. For example, one can
consider using small minibatches (B < I) for problems where
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Vg is computationally expensive and D, is relatively efficient.
On the other hand, one can consider larger minibatches for
problems where D, is relatively slow compared to Vg. In this
paper we focus on image denoisers corresponding to deep neural
nets, thus obtaining D, that is both fast and effective for many
practical imaging problems.

B. CNN-Based Denoiser

In recent years, CNNs have been shown to achieve the state-
of-the-art performance on image denoising [11], [52]. We pro-
pose a simple denoising network DnCNN* as the deep learning
module in SIMBA. The architecture of the neural network,
illustrated in Fig. 1, is adapted from the popular DnCNN. In
general, DnCNN™* consists of two parts. The first part con-
tains Ny, — 1 sequential composite convolutional layers, each of
which has one convolutional layer followed by a rectified linear
unit (ReLU) layer. The second part is a single convolutional
layer that outputs the final denoised image, resulting the total
number of layers in DnCNN™ to be N,. All the convolution filters
are implemented with size 3 x 3, and every feature map has 64
channels. In SIMBA, we apply this 2D image denoising network
to the 3D sample by performing the layer-by-layer denoising
along the axial direction z.

We generated the training dataset by adding AWGN to the
natural images from BSD400 and applying standard data aug-
mentation strategies including flipping, rotating, and rescaling.
Note that our training dataset does not include any biomedical
image. We employed the residual learning technique [53] in
DnCNN* so that the network is forced to learn the noise resid-
ual in the noisy input. DnCNN* was trained to minimize the
following loss

12
£9:};Z{er(fl?i)_yiHS“v‘prg(mi)—yiHl}’ (16)
i=1

where x; is the noisy input, y, is the noise, and fy () represents
the noise predicted by the neural network. Eq. (16) penalizes
both the mean squared error (MSE) and the mean absolute error
(MAE) between the estimated noise and the ground truth. A
loss parameter p > 0 is thus introduced to adjust the tradeoff
between the two errors for the best training performance. Our
results show that our simple DnCNN* is competitive with tradi-
tional denoisers in terms of the imaging quality.

IV. CONVERGENCE ANALYSIS

Our analysis relies on the fixed-point convergence of averaged
operators, which is well known as the Krasnosel’skii-Mann
theorem [54]. Here, we extend the result to the iterative online
algorithms under the RED formulation and show the worst-case
convergence rates. Note that our analysis does not assume that
the denoiser corresponds to any explicit RED regularizer. We
first introduce the assumptions necessary for our analysis and
then present the main results.

Assumption 1: We make the following assumptions on the
data-fidelity term g:
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(a) The component functions g; are all convex and differen-
tiable with the same Lipschitz constant L > 0.

(b) At every iteration, the gradient estimate is unbiased and
has a bounded variance:

E [Vo(e)] ~Vate). & [|Vate) - Vuta)}] < 2.

for some constant v > 0.

Assumption 1 (a) implies that the overall data-fidelity g is
also convex and has Lipschitz continuous gradient with constant
L. Assumption 1 (b) assumes that the minibatch gradient is an
unbiased estimate of the full gradient. The bounded variance
assumption is a standard assumption used in the analysis of
online and stochastic algorithms [55]-[57]

Assumption 2: The operator G is such that zer(G) # &.

Assumption 2 is a mild assumption that simply asserts the
existence of a solution to (8). It is related to the existence of
stationary points in traditional smooth optimization [58].

Assumption 3: Given o > 0, the denoiser D,, is a nonexpan-
sive operator such that

Do (®) = Do (y)ll2 < [ —yll2 z,y € R,

Nonexpansive variants of several widely used denoisers, such
as NLM and DnCNN, have been developed in [12], [14], [51],
[59]. Under the above assumptions, we can establish the follow-
ing for SIMBA.

Theorem 1: Run SIMBA for ¢ > 1 iterations under Assump-
tions 1-3 using a fixed step-size 0 < v < 1/(L + 27) and a fixed
minibatch size B > 1. Then, we have

1< -
;Z 1G (=" 1)]I3
k=1

Proof: See Appendix B. |

Theorem 1 is analogous to the convergence of the minibatch
stochastic gradient descent (SGD) [60] in the sense that the
convergence can be established up to an error term that depends
on vy and B. Similarly, the accuracy of the expected convergence
of SIMBA to zer(G) improves with smaller y and larger B. For
example, by setting v = 1/[(L + 27)/1], we get

5 ||G<w’“>||§]
k=1

where C' is some positive constant.

Finally, note that the analysis in Theorem 1 only provides suffi-
cient conditions for the convergence of SIMBA. As corroborated
by our numerical studies in Section V, the actual convergence of
SIMBA is more general and often holds beyond nonexpansive
denoisers (such as BM4D). One plausible explanation for this
is that such denoisers are locally nonexpansive over the set of
input vectors used in testing (see also discussion in [59]). On the
other hand, the recent techniques for spectral normalization of
deep neural nets [61]-[63] provide a convenient tool for building
globally nonexpansive neural denoisers that result in provable
convergence of SIMBA.

= — a3
E <(L+2
<(L+ 7'){ p + 5

E min < Q’
kell,..t Vit

}||G<w’“>|§} <E
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Fig. 2.
Aircraft, Boat, Cameraman, Foreman. Bottom row from left to right: House,
Monarch, Parrot, Pirate.

Eight test images used in the experiments. Top row from left to right:

TABLE 1
LIST OF PARAMETERS OF THE EXPERIMENTAL SETUP

Experimental parameters Simulations (V-B) Experiments (V-C)

A wavelength of LED light 630 nm 630 nm

€p background medium index 1.33 1.33

ZLED axial position of LEDs —70 mm —79 mm

z axial position of the sample 0um (—20,100) um
MO microscope objectives 40x 10x

NA numerical aperture 0.65 0.25

V. EXPERIMENTAL VALIDATION

In this section, we validate SIMBA on both simulated and
experimental data. We first numerically demonstrate the effi-
ciency and practical convergence of SIMBA in simulations.
Next, we apply SIMBA to reconstruct a 3D model from a
set of real intensity-only measurements. Our results highlight
the applicability and effectiveness of SIMBA for the iterative
inversion in optical tomography.

A. Setup

In simulations, we reconstruct eight grayscale natural images,
representing the phase component of the complex permittivity
contrast, displayed in Fig. 2. They are assumed to be on the
focal plane z = 0 um with LEDs located at z;gp = —70 mm.
We generate [ = 60 simulated intensity measurements with
40x microscope objectives (MO) and 0.65 numerical aperture
(NA). All simulated measurements are corrupted by AWGN
corresponding to 20 dB of input signal-to-noise ratio (SNR). As a
quantitative metric for measuring the quality of reconstructions,
we use the SNR defined as follows

SNR(#, y) = max {2010 (lly@)}
(y y) a,beR £10 ||y —ay I b”ZQ

where y represents the noisy vector and y denotes the ground
truth. In experiments, we recover a 3D algae sample from real
IDT measurements. The 3D sample is located over the range
(—20,100) pm and z;pp = —79 mm. We set the slice spacing
as 5 um, so each slice represents the average over the sample
thickness. We take I = 89 measurements with 10x MO and
0.25 NA for reconstruction. We refer to Table I for the detailed
summary of the experimental parameters. All experiments in
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TABLE II
LIST OF ALGORITHMIC HYPERPARAMETERS
Hyperparameters Simulations (V-B) Experiments (V-C)
2®  initial point of reconstructions 0 0
B minibatch size 20 10
I batch size 60 89
vy step size LJ:QT L+127
o input noise level for DnCNN* 10 5
P loss function parameter 0 1
Ny number of layers in DnCNN™ 7 10

optimized for the
dataset

level of regularization in
GM-RED and SIMBA

optimized for
each image

3

this paper were performed on a machine equipped with an Intel
Xeon E5-2620 v4 Processor that has 4 cores of 2.1 GHz and 256
GBs of DDR memory. We trained all neural nets using NVIDIA
RTX 2080 GPUs.

The algorithmic hyperparameters are summarized in Table II.
All algorithms start from x® = 0. We trained DnCNN* for
the removal of AWGN at four noise levels corresponding to
o € {5,10,15,20}. The same set of o is used for BM3D. All
algorithmic parameters are optimized for the best performance.

B. Simulated Data

In this section, we numerically illustrate the advantages of
SIMBA in tomographic imaging over the batch GM-RED. The
advantages are: (1) better SNR under a limited memory budget;
(2) better time efficiency when all the measurements are used.

Fig. 3 (top) plots the average SNR over test images against
the iteration number for SIMBA and GM-RED (20), both using
DnCNN* as the denoiser. GM-RED (20) uses a fixed set of 20
(out of 60) measurements, while SIMBA selects a random subset
of 20 at every iteration. Under the same computational complex-
ity, SIMBA achieves a SNR boost of about 1 dB over GM-RED
(20) because the former has access to all the measurements.
Visual examples are presented in Fig. 5. As a reference, we also
plot the SNR for GM-RED using all 60 measurements, denoted
as GM-RED (full).

Fig. 3 (bottom) highlights the faster time convergence of
SIMBA compared to GM-RED (full) to the same level of SNR.
Fig. 5 highlights that the SNR values and the visual quality
obtained by SIMBA and GM-RED (full) are nearly identical.
SIMBA, however, significantly reduces the reconstruction time
by processing one third of all measurements at each iteration.
Specifically, the average per-iteration times of GM-RED (20),
SIMBA, and GM-RED (full) are 0.30 second, 0.31 second, and
0.52 second, respectively. We also note that by processing only
a subset of measurements, SIMBA leads to a more favorable
tradeoff between computational cost and memory compared to
GM-RED (full). This makes SIMBA beneficial for processing
datasets containing a large number of tomographic measure-
ments. The convergence speed of SIMBA can be significantly
improved by using deep learning denoisers implemented on
GPUs. This is highlighted in Fig. 4, where SIMBA DnCNN” is
compared against SIMBA BM3D.

Table III shows final SNRs of all reconstructions we per-
formed. We run all simulations using the accelerated versions of
these algorithms, which are analogous to the accelerated gradient
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GM-RED (20)
o —— SIMBA } accelerated
Z —— GM-RED (full)
o GM-RED (20)
% — — SIMBA } non-accelerated
— — GM-RED (full)
O 1 1 1 ]
0 iterations 1000
251

SNR (dB)

O L ]
0 seconds 100

Fig. 3. Illustration of convergence in SNR of SIMBA with minibatch size
B = 20 under the DnCNN* denoiser. The top and bottom figures plot the SNR
values against the number of itartions and running time, respectively. Two batch
algorithms, GM-RED (20) and GM-RED (full), are plotted for comparison.
Under the same per-iteration complexity, SIMBA converges to significantly
higher SNR than GM-RED (20) due to its actual usage of the full data. Moreover,
online processing makes SIMBA converge significantly faster than GM-RED
(full). The acceleration is due to the lower computational cost of processing
a small random subset of the full data. The same trend is observed for both
accelerated and normal versions of the algorithms.

25r
.
[
Z
~
s/l - ____
@ ——— —
——SIMBA DnONN*y - ted
——SIMBA BM3D } accelerates
— — SIMBA DnCNN*
— — SIMBA BM3D non-accelerated
0 1 L ) I
0 seconds 100
Fig. 4. Tllustration of the convergence speed of SIMBA with minibatch size

B = 20 under the DnCNN* and BM3D denoisers. The figure plots the SNR
values against the running time in seconds. SIMBA DnCNN* is significantly
faster due to the fast GPU implementation of the denoiser.

method by Nesterov [58]. Empirically, they converge to the same
solution as the non-accelerated counterparts. For reference, we
show the evolution of SNR for non-accelerated versions by
the dotted lines in Fig. 3. Table III shows that our DnCNN*
denoiser has higher average SNR than BM3D. The compatibility
of SIMBA with DnCNN*, which is a low-complexity denoiser,
increases the potential of applying SIMBA to large scale image
reconstructions.
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Visual examples of reconstructed Aircrafts (left) and Boat (right) images by different algorithms. Three columns correspond to algorithms using fixed 20,

random 20 out of 60, and full 60 measurements, respectively. The first row presents the unregularized results and the second and third row show the results given
by a well-known BM3D denoiser and a state-of-the-art deep learning prior, respectively. Differences are zoomed in using boxes inside the images. Each image is
labeled by its SNR (dB) with respect to the original image. Note that our proposed algorithm SIMBA recovers the details lost by the batch algorithm with the same
computational cost and achieves the same level of SNR and visual quality as the full batch algorithm.

TABLE III
OPTIMIZED SNR FOR EACH TEST IMAGE IN DB

Algorithms GM (20) SGM GM (full) GM-RED (20) SIMBA GM-RED (full)
Denoisers — — — BM3D DnCNN™ BM3D DnCNN* BM3D DnCNN™
Aircraft 17.44 18.00 18.01 18.82 19.85 19.65 20.48 19.47 20.44
Boat 18.09 18.78 18.82 19.96 20.40 21.23 21.29 21.12 21.55
Cameraman 16.27 17.06 17.08 17.36 18.83 18.36 19.59 18.34 19.32
Foreman 22.78 23.81 23.88 25.24 27.35 26.76 28.55 26.78 28.71
House 19.89 20.73 20.79 22.02 22.57 22.88 23.47 22.86 23.56
Monarch 17.70 18.65 18.69 19.16 21.50 20.37 22.63 20.42 22.81
Parrot 17.85 18.69 18.72 18.38 19.22 19.11 19.79 19.14 20.05
Pirate 19.17 19.79 19.81 19.76 20.11 20.41 20.98 20.44 21.06
Average 18.65 19.44 19.48 20.09 21.23 21.10 22.10 21.07 22.19

C. Experimental IDT Dataset

In this section, we use SIMBA to reconstruct a 3D algae
sample of 1024 x 1024 x 25 pixels from 89 high-resolution
measurements. The large sample volume dramatically increases
the memory usage and computational cost, and prohibits the
applicability of the full batch algorithms. Experimental results
show that SIMBA successfully overcomes these difficulties by
processing a small subset of all measurements (B = 10) atevery
iteration and leads to significant performance improvements
compared to the method reported in [27].

Fig. 6 provides a 3D visualization of the phase component of
the image recovered by SIMBA, with different algae labeled by
circled numbers (there are 6 of them). Fig. 7 compares three
slices of our SIMBA results and the Tikhonov (full) results

obtained by algorithm in [27], which uses all 89 measurements.
As discussed in [27], the DC component of the phase is lost
in the IDT forward model, we thus set the mean of all the
results to the one of the Tikhonov reconstruction for a more
uniform comparison. We evaluate the quality of different recon-
structions by comparing their axial sectioning effect and the
ability to eliminates artifacts. In the 3D tomographic model
with strong sectioning effect, a pattern emerges only in the
slice it belongs to and fades away as we go axially to different
depths. Sectioning enables us to better predict the axial location
of the patterns within a 3D object and thus better understand
its internal structure, which is crucial for biomedical imaging
applications. While Tikhonov regularization is attractive from
computational perspective, it is known that to lead to excessive
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Fig. 6.

Visualization of the 3D algae reconstruction. Algae are labeled by circled numbers. We select three slices of the sample to illustrate the improvement

of performance by our proposed method SIMBA with B = 10 over Tikhonov (full), which uses all 89 measurements. Regions (a) and (b) demonstrate the better
axial sectioning effect of SIMBA and arrows (c) to (f) point out the areas where SIMBA suppresses the artifacts present in the Tikhonov reconstruction.

SIMBA BM4D (B=10

.

Fig. 7.

Comparison of SIMBA under BM4D and DnCNN* against Tikhonov. Regions (a) and (b) are zoomed in to highlight visual differences. Tikhonov

reconstructed image contains grid-shape artifacts and interfering contents from other slices, while BM4D generates blocks and nonsmoothness. SIMBA under

DnCNN* produces the most real recovery with the clearest shape of the algae.

smoothing. This complicates the understanding of the axial
structure of the sample. On the other hand, by leveraging the
DnCNN* prior, SIMBA improves the performance, while also
mitigating the computational complexity with online processing.
Our results show that SIMBA with DnCNN™ enables better
sectioning of the object compared to the Tikhonov prior. For
example, maintaining the clarity and sharpness of algae (2) in
slice z = 25 pum, SIMBA successfully reduces the artifacts gen-
erated by the content of adjacent slices, which exist in the region
() of Tikhonov. In the other two slices, algae (2) fades away and
does not generate strong shadowy artifacts as indicated by arrows
(c) and (f). By horizontally comparing the two rows, the algae
cluster in region (a) is visually better resolved by SIMBA than
Tikhonov. Moreover, in SIMBA reconstructions, the top half of
algae (5) in region (b) looks sharp in slice 2 = 25 um and the
bottom half appears clear in slice z = 35 pm. This inter-slice
information implies that algae (5) penetrates through z = 25 um
and z = 35 um. However, the whole structure of algae (5) is
present in both slices of Tikhonov reconstructions, which fails
in illustrating the axial position. Note that SIMBA also better

eliminates artifacts pointed out by arrows (d) and (e). To further
analyze the performance of the priors, we bring BM4D, the 3D
version of the well-known denoiser BM3D, into comparison. In
zoom-in region (a) of Fig. 7, Tikhonov reconstruction contains
grid-shape artifacts. BM4D generates small blocks due to its
block-matching mechanism. DnCNN* provides a more real and
sharper result than the other two. In region (b), Tikhonov recon-
struction is of satisfactory visual quality but the shadow of algae
(5 and (6) in the background interferes with the actual content
in this slice. BM4D erases the shadow in the background but it
again generates blocky artifacts which makes its reconstruction
not as real as DnCNN” result.

Finally, we present one slice of the full 1024 x 1024 x 25
reconstruction by SIMBA under DnCNN* in Fig. 8. For com-
parison, we run GM-RED (full) under DnCNN* but only for
the dotted region because of the high computational cost of
the full batch reconstruction. The result is juxtaposed with our
SIMBA result. These two algorithms are run with the same 7
value until convergence. Visually, they look almost identical
and we present the absolute value of the residual between
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Slice 8 of 1024x1024x25
SIMBA DnCNN* (B=10)
Full-size Reconstruction

Fig. 8.
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Slice from the full 1024 x 1024 x 25 reconstruction by SIMBA under DnCNN*. On the right is a comparison between SIMBA and the full batch results

for the dotted region. The two reconstructions are visually indistinguishable, and the absolute value of the residual between them highlights the numerical proximity
of SIMBA to the full batch reconstruction. Note the small numerical scale of the residual compared to that of the two reconstructions.

the two for reference. The residual is negligible compared to
the numerical scale of the two results. Quantitatively, if we
assume the result of the full batch algorithm to be the “ground
truth,” the SNR of SIMBA is 47.03 dB. This substantiates that
SIMBA sufficiently matches the full batch algorithms in terms
of the final reconstruction quality. Specifically, the average per-
iteration running time of SIMBA for reconstructing the dotted
region is 22 seconds, while that of GM-RED is 192 seconds,
which corresponds to a 9x speed-up. SIMBA also requires less
memory at every iteration by processing only about one ninths of
full measurements. The reduced running time and memory usage
in processing such an intensive amount of data highlighted the
efficiency improvement of SIMBA compared to the traditional
batch GM-RED.

We would also like to note that the memory considerations
in image reconstruction must take into account the size of all
the variables related to the image volume x, the measured data
{y,}, and the measurement operators {A;}. The goal of this
paper is to address the problems where the bottleneck is in the
storage and processing of the measurements and measurement
operators. Table IV records the total memory (GB) used by

SIMBA and GM-RED (full) in each iteration. Note that our
implementation stores each A; as two separate matrices for
phase and absorption. Additionally, each matrix is stored in the
Fourier space to reduce computational complexity of computing
convolutions. This results in the storage of complex valued
arrays for each, consisting of pairs of double precision floats
for every element. While GM-RED (full) requires 75.45 GB
of memory due to its processing of all measurements in every
iteration, SIMBA uses only 11.26 GB, about one seventh of the
full volume, which makes the algorithm particularly well-suited
for tomographic applications where one needs to process a very
large number of views.

VI. CONCLUSION

We proposed an extension of RED for solving imaging inverse
problems in optical tomography. Our method is scalable to
large measurements and uses a deep denoising prior to improve
the final estimate. We proved the fixed-point convergence of
the method without assuming an explicit objective function,
which complements the current theoretical analysis of RED for
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TABLE IV
PER-ITERATION MEMORY USAGE SPECIFICATION FOR PROCESSING OUR EXPERIMENTAL DATA

Algorithms SIMBA (10) GM-RED (full)
Variables Data type Shape Size Shape Size
(A} phase complex64 1024 x1024x25%x10 391 GB 1024 x1024x25%x 89 34.77 GB

‘ absorption  complex64 1024 x1024x25x10 391 GB 10241024 x25% 89 34.77 GB
{yi} complex128 1024 x 1024 x 10 0.31 GB 1024 x 1024 x 89 2.78 GB
others combined — — 3.13 GB — 3.13 GB

Total — — 11.26 GB — 75.45 GB

large-scale image reconstruction. We validated the method on
both simulated and experimental IDT data. Especially, the 3D
reconstruction of a large algae sample fully elucidates the ben-
efits of our method in data-intensive imaging problems. Future
work includes the application of SIMBA in other advanced IDT
modalities with coded illumination patterns [64] and accelerated
data acquisition [65].

APPENDIX A
BACKGROUND MATERIAL

The results in this section are well-known in the optimization
literature and can be found in different forms in standard text-
books [54], [58], [66], [67]. For completeness, we summarize
the key results useful for our analysis.

Definition 1: An operator T is Lipschitz continuous with
constant A > 0 if

[T - Ty|| <Az —yl, =yecR"

When A = 1, we say that T is nonexpansive.
Definition 2: T is cocoercive with constant 5 > 0 if

(Tz —Ty) (z —y) = Bl[Te — Ty|*, 2,y cR"

When 5 = 1, we say that T is firmly nonexpansive.
The following results are derived from the definition above.
Proposition 1: Let T; : R™ — R" for i € I be a set of non-
expansive operators. Then, their convex combination

T:=) 6T, with 6;>0and » 6; =1,
iel iel
is nonexpansive.
Proof: By using the triangular inequality and the definition

of nonexpansiveness, we obtain

ITae =Tyl < > 6Tz — Tuy|

iel
< (Z 9> &yl = = -y,
iel
forall z,y € R". |
Proposition 2: Consider R =1 — T where T : R — R"™,

T is nonexpansive < R is (1/2)-cocoercive.

Proof: First suppose that Ris 1/2 cocoercive. Leth := x —
y for any x,y € R". We then have

1
5|IRz —Ry[* < (Re — Ry)Th = |[r|* — (Tz — Ty) h.

We also have that
1 2 1 2 T 1 2
IRz =Ryl = S[[R[° — (T = Ty) "h + [Tz - Ty|".
By combining these two and simplifying the expression
[Tz — Tyl < ||h]].

The converse can be proved by following this logic in reverse.ll

Definition 3: For a constant o € (0, 1), we say that T is a-
averaged, if there exists a nonexpansive operator N such that
T=(1-a)l+aN.

The following characterization is often convenient.

Proposition 3: For a nonexpansive operator T, a constant
a € (0,1), and the operator R := | — T, the following are
equivalent

(a) Tis a-averaged

(b) (I —1/a)l+ (1/a)T is nonexpansive

© [Tz ~Ty|? < |l — |2 ~ (1:2)]|Ra

Ryl]?, =,y € R™.

Proof: See Proposition 4.35 in [54]. | |

Proposition 4: Consider T : R™ — R™and 8 > 0. Then, the
following are equivalent

(a) Tis B-cocoercive

(b) AT is firmly nonexpansive

(¢) | — ST is firmly nonexpansive.
(d) AT is (1/2)-averaged.
(e) | — 27T is nonexpansive.

Proof: Foranyx,y € R",leth := a — y. The equivalence
between (a) and (b) is readily observed by defining P := ST and
noting that

(Pz —Py)Th = 3(Te —Ty)"h
and [Pz —Py|? = @[Tz —Ty|. (7
Define R := | — P and suppose (b) is true, then
(Rz — Ry)"h = [|h||* — (Pz — Py)Th
= |Rz — Ry|® + (Pz — Py)"h — [Pz — Py|?
> |Rz — Ry|*.

By repeating the same argument for P = | — R, we establish the
full equivalence between (b) and (c).
The equivalence of (b) and (d) can be seen by noting that

2||Px — PyH2 < 2(Px — Py)Th

& [Pz —Py|* <2(Pz — Py)'h — |[Pz — Py|?
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= ||h]* = (|r]* - 2(Pz — Py)"h + [Pz — Py|?)
= ||h]* ~ [|Rz — Ry|*.

To show the equivalence with (e), first suppose thatN := | — 2P
is nonexpansive, then P = (1 + (—N)) is 1/2-averaged, which
means that it is firmly nonexpansive. On the other hand,
if P is firmly nonexpansive, then it is 1/2-averaged, which
means that from Proposition 3(b) we have that (1 — 2)| + 2P =
2P — | = —N is nonexpansive. This directly means that N is
nonexpansive. |

APPENDIX B
PROOF OF THEOREM 1

We consider the following operators
G :=Vg+H and G = Vg+H with H:= 7(I = D,),

where G is the minibatch approximation of G. The direct appli-
cation of Assumption 1 implies that for any ,y € R"

E[G(z)] = E[Vg(z)] + H(z) = G() (18a)

2

E[|G(z) — G(x)[3] = E[| Vg(x) — Vg(@)[3] < = (18b)

|

Now we prove Theorem 1 in several steps.

(a) Since Vg is L-Lipschitz continuous, we know that it
is (1/L)-cocoercive (see Theorem 2.1.5 in Section 2.1
of [58]). Then from Proposition 4, we know that the
operator (I — (2/L)Vyg) is nonexpansive.

(b) From the definition of H and the fact that D is nonexpan-
sive, we know that (I — (1/7)H) = D is nonexpansive.

(¢) From Proposition 1, we know that a convex combination
of nonexpansive operators is also nonexpansive, hence

2 2 L 2
S <L+2T'2> [Ing]

2 2T 1
+<L+%'z>@‘fﬂ’

is nonexpansive. Then from Proposition 4, we know that
Gis 1/(L + 27)-cocoercive.
(d) Consider any z* € zer(G) and € R™. We then have

|z — 2 — 7Ga|?

= |lz — @'||* — 27(Gz — Ga*)T(x — «") +°(|Ga]®

2y — (L +27)7?2
< _ *2_—6 2
< o - o' - L2220 ga
* i 2
< — CRu——Tc} 19
< o - a'|* - |G, (19)

where we used Ga* = 0, the cocoercivity of G, and the
fact that 0 < v < 1/(L + 27).
(e) Forasingleiteration of SIMBA z+ = & — yGx, we have

|zt — 2| = ||z — 2" —1Ga|?
— |@ — 2" — Gz + (G — Ga)|?

= |& — z* — 1Ga|* + 12| Gz — G|
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+2v(Gx — éw)T(m — " —~Gx).

By taking the conditional expectation with respect to
the previous iterate a, using (18), and applying the
bound (19), we obtain

2.2
* * 7 v
E[z* —a|* | 2] < |l — " —1Ga|* + ——

B

2,2
* Y 2 v

<l — o1 |G — 20

<o - 2| - 725 lGal* + 1 20)
(f) By simply rearranging the terms, we obtain

2,2

o5 l6el?<E [z — | ~[la* — 2" la] + 5

(g) Hence, by averaging over ¢t > 1 iterations and taking the

[1]
[2]
[3]
[4

=

[5

—_

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

total expectation, we obtain our main result

2

+

t
1 I L
2ot P <= t =
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